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1, INTRODUCTION

In, reliability analysis, we often conduct similar tests to assess the

reliability parameters. Empirical Bayes (EB) estimators may be-employed to

reduce the risk by combining all the test data. There are usually several

reasonable empirical Bayes estimators. As pointed out by Martz and Waller

(1982, p. 633), it is an important question which EB estimator has the smallest

EB risk (the expected Bayes risk of the EB rule). We report here some Monte

'Carlo results that estimate the EB risks. These results will guide us in

determining which EB estimator is more desirable.

We assume that we are simultaneously testing p populations. For the ith

population, i = 1, ... , p, we test ni devices until ri of them fail. The lifetime for

each device tested in the ith population is assumed to be Weibull with known

shape parameter pi and unknown scale parameter Aj,

tPi
Adtli,p ) - l 4 11

This model includes the exponential (Pi = 1) and Raleigh (Pi = 2) distributions.

Let ti = (til ..., tir,) denote the ordered lifetimes of the ri devices that failed

in the ith population, where til <..., < tiri. Then Si = (ni-ritP + ,ril ti is the

sufficient statistic for A, with gamma distribution G(ri,X).

In this paper, we consider a parametric empirical Bayes formulation. We

assume the parameters Ai are independent and identically distributed with

the inverted gamma distribution IG(a, P). This conjugate prior is chosen to

facilitate a closed form expression for the Bayes estimator Ai. To obtain
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empirical Bayes estimators,, we are going to estimate a and /3 from the

marginal density of Si given a and P. We then substitute -these estimates

and,3 for the a and jin the Bayes rule. Usually, we can estimate a and fbya

moment method or by an ML-II method. The moment method estimates a

and 1P by equating functions of a and 1 to the marginal mean and the

marginal. variance respectively. The ML-I method obtains, the maximum

likelihood estimates of a and P from the joint deniity of S1, S2, ..., Sp, given a

and P1. Recently, Dey and -Kuo (1991) have obtained a, different EB estimator

when a is known. This estimator expands the usual estimator by a multiple'

of the geometric mean of the component estimators. They show the

geometric mean estimator dominates the best multiple estimator (in

frequentists' risk) for a wide class of p, a, and rj values. In thispaper, we

propose a modified estimator called the hybrid geometric mean estimator

Which estimates a by the moment method and estimates P as in Dey and Kuo.
We compare ,the EB risks of the three EB estimators: moment' EB, ML-II

EB and hybrid geometric meah EB. The EB risks caninot be expressed in closed

form. We employ extensive Monte Carlo simulations to approximate these

EB risks. Our simulation resulis show that all the three EB estimators

perform well when compared to the Bayes estimator for a;> 5, P > 5, ri > 5, for

all i and p >5.

If we fix the number of censored devices, say for example, ri =2 for all i,

our recommendation depends on the different a and P values. A more

detailed discussion is given in Section 3. In general, it is safe to recommend

the moment EB estimator. Unless we are in the Situation with moderate a

and moderate 1 values (around a = 5 and.P = 3), where the hybrid geometric

mean estimator is recommended. Unfortunately, our recommendation

2



depends on the unknown a and -Ivalues. This should not deter us in using

the recommended estimators, since we do discuss various methods in

estimating a and 3 in this paper.

If the number of censored devices is moderate, say ri = 5 for all i, then we

would recommend using the moment EB estimators, for any values of a

and P.

We have also evaluated the EB risks for two other cases (1) a known and

(2) P known. In case (1), We compare the EB risks among the Dey and Kuo

(D/K) estimators, the moment-EB and the ML-II EB estimators. All three

estimators have comparable -risks independent of a, P,.ri, and p. In case (2),

we compare the EB risks between the ML-II and the moment-EB estimators.

The ML-Il EB is clearly a winner in almost all cases, except the cases where

both ri and a are small, say around ri = 2 and a = 2.

Different classes of EB estimators are developed by Lemon and Krutchkoff

(1969) and Canavos and Tsokos (1971). Bennett and Martz (1973), Couture and

Martz (1972) consider nonparametric EB estimation of 1/;LP. Martz and

Waller (1982) have also provided many relevant developments in this area.

In Section 2, we derive the various estimators for risk comparisons. In

Section 3, we discuss the Monte Carlo methods to approximate the EB risk

and the results.

2. EB ESTIMATORS

By sufficiency considerations, observe that tJ e Si have independent

gamma distributions G(ri, 1j). We assume that the 1j, i = 1, ..., p, have

independent inverse gamma distributions IG(a,fJ), i.e.,

1

= e ,wherea >,P>0.
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The posterior distribution of Aj given, S isIG(a+rj, 3/(SjI+!)), -Therefore,-th,

Bayes estimator for Ai with respect to the squared error loss

(L(J'a)= 1 (i a) 2) is

6B(i) = E(AI Si I

+a+'Sl (Zi)

To construct EB estimators, we first obtain the marginal density of 5,

m(S I a,1P) =Jf(SjirA'jAd't = I~ P ) 5 '~ (2.2)r(a)r(r) (Si+l a + ' 2

Therefore, we can find a, P which maximize the joint:density of tlhe Sis,

r(_Isa, P)-fi r( +.). ,-, (2.3)
i=1 r(a)r(ri) (S3p + 1)a+, (.

In Appendix 1, we show there is a unique root of

og I = 0 = -logmSja,fl). A sufficient condition based on the

second derivative test is given to verify that the unique root &,f yields the

maximum likelihood estimates of (2.3).

In addition to the ML-II method we can also estimate a and / by the

moment method. We will assume ri = r for all i. Using the two equations in

Berger (1985, p. 101) which relate the marginal mean and the marginal

variance to expectations from the model, we have

r a n d rrr(Pm= EX(r) =x and =(a=Er 2 -  = ( 1+i (2.4)PM p a 1 2(a-1)2, a-2)

Define Em = ,Sip, &2 = ,(Si- im)2 /(p-1). We can solve a and P from (2.4)

using.Um, 2 to substitute for Pm and a-. We have

4



efr =max +2r&m2  and = maxI---- 0. (2.5)

The truncated version is obtained because without the condition a > 2 we

do not have finite variance in the prior distribution. Moreover, fi must be

positive. The same truncation methods are also applied to other EB

estimators.

Next we will discuss how to obtain the hybrid geometric mean EB

estimator. In Dey and Kuo (1991), they show

4 P1=r -1§c Ari + P)
P -- (a) j=1 r(r)

1
Therefore, they obtain an unbiased estimator of

-P3

] -(a) _ F(ri) S (2.6)

The Dey and Kuo EB geometric mean estimator is obtained from (2.1) with/3

estimated from (2.6) and known a. However, the assumption of known a is

too restrictive in practice. In this paper, we propose to estimate a by a

moment condition. Observe from (2.4),

14 2 r(a - 2)
- (2.7)

02 -1+r

Therefore, we can solve for a from (2.7) using 1m and &2 for Pm and a2,

5



aratio = (2.8)

The hybrid geometric mean EB estimator is obtained from (2.1) using (2.6),and

(2.8) to estimate a and /.

We have considered the EB estimators for a and P unknown. We can

also develop EB estimators when a is known. In this ,case, we will consider

the following EB estimators: (1)-the moment EB, where

= max{( r) m ,0}; (2.9)

(2) the ML-II EB, where 3 is estimated by maximizing (2.3) as a function P forl

the given known a; and (3) the Dey and Kuo (D/K) EB, where 3 is estimated

from (2.6).

For the other case / known, we estimate a by (1) the moment

consideration

&= max{l+ ( mI)-'r,21 (Z10)

and (2) the maximum likelihood estimate of a from (2.3), i.e., the root of

equation (A.2) in the appendix.

We report the EB risk evaluations of these EB estimators in the next

section.

3. EB RISKS

Recall the loss function is defined by

L(La 1XR;L -ai)2.
P i=1

6



The Bayes risk of a decision rule 8(S) = (81(s). ...,8P(s)) is defined by

r(T, 8($)) = ffL(X,8(S))f(SX)dSdzc(().

The EB risk of 8(S) is the expected Bayes risk, where the expectation is taken

over all the samples.

EB risk = Er(7r,8(S)). (3.1)

The EB risk is approximated by the Monte Carlo method. In each

iteration, we generate , i = 1, ..., p from an IG(a) distribution with a,fl fixed.

Given the Aj's, we generate Xie, I = 1, ..., 10 from the exponential distribution

Exp(Ai). The random variable til = X11P is distributed as (1.1). We order theit

variables til < 42 < < ti., and compute Si = (10- r)tir + Ir t. (Note: we

assume ri = r and pi = p for all i.) We compute the Bayes rule 8B as in (2.1).

We also compute each of the EB rules as in Section 2. Then we repeat these

steps for 10,000 iterations. The EB risk is approximated by

A 1 10,000 p 2
EB risk = - X 1 .i -'E~(10,000 j=1 i=1

where ,ii is the parameter for the ith population simulated in the jth iteration,

and 8EB,j(i) is the EB estimator for the ith population in the jth iteration.

Figure 1 plots the EB risk of the Bayes estimator (2.1), the ML-II EB (from

(A.2) and (A.3)), the moment EB (from (2.5)) and the hybrid geometric mean

EB (from (2.6 and 2.8)) for five populations with r = 2, 5 and 10. It is expected

as r increases, the EB risk decreases because more information on the

7
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lifetimes is collected. Moreover, the differences of the EB risks of the three

estimators and the Bayes rule also decrease. We observe that the Bayes rule

has the smallest risk.

If we fix the number of censored devices, say for example, ri = 2for all i,

our recommendation depends on the different a and /3 values. Case (1): a is

small, say around 2. The hybrid geometric mean is the best. It is a bit better

than the moment EB. Both outperform the ML-II EB by a substantial amount.

Case (2): a is large, say around 10, the moment EB is best. It improves upon

the ML-II EB by a small amount. Both dominate the hybrid geometric- mean

estimator by a substantial amount. Both cases 1 and 2 are somewhat

insensitive to the /3 values. Case (3): a is moderate, say around 5. Then the

performances depend on the/3 values. When /3 is small around 1, then the

moment EB improves the other two by a substantial amount. When /3 is

moderate around 3, then the hybrid geometric mean estimator improves

upon the other two estimators by a substantial amount. In summary, it is safe

to use the moment EB estimators unless we are in the situation of moderate

a and 3 values (around a = 5 and 0 = 3).

Next consider the case that number of censored devices is moderate, say ri

5 for all i. The moment EB consistently performs well among the three

estimators independent of the values of a and /3.

Figure 2 plots the EB risks of the four estimators for various r values

when a is known. The four estimators are the Bayes, moment,. ML-II and the

one developed in Dey and Kuo (1991). The latter three estimators are

computed from (2.1) with13 estimated by (2.9), (A.3) and (2.6), respectively.

9



0. 10

0.09

II 0.08

0.07

II 0.06

0.04

0.03

2, 3 4 5 6 7 8 9 10

0. 11

0. 10
0.09
0.08
. 07

0.06
LO) 10.05

0 04

0.03

0.02
0.01
0.000 .00''' I'''''''~rr ...."' '' 1 '' '" ' ....... I ...... ' 1' ' ' ' 1 .... I . ''- ''1-rr

2 3 4 5 6 7 8 9 10

Estimators e-O ,-. Bayes --- , D/K
E6-8-a ML-II +v+-- Moment.

Figure 2. EB risks of the four estimators are plotted versus r for
configurations when a is known.



Only the configurations with a = 5 and / = 1, 3 are plotted here. All the other

configurations show similar behavior, therefore are omitted. All the results

show that the Dey and Kuo estimator dominates the moment and ML-II

estimators, sometimes by a very small amount.

Figure 3 compares the EB risks of the three estimators for various r

values, where P is known. The three estimators are the Bayes estimators, the

moment, and the ML-II estimators. The parameters a in the two latter

estimators are computed from (2.10) and (A.2), respectively. Our simulation

results show that the ML-II EB dominates the Moment EB usually. The

improvement of the ML-II EB over the Moment EB could be substantial in

many cases. The exception occurs when both r and a are small, where the

moment EB improves upon the ML-Il EB by a small amount. Only two cases

with a = 5 and P = 1, 3 are presented here for short.

All the figures are produced by the GPLOT procedure of the SAS

(Statistical Analysis System).
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-APPENDIX- ML-II PRIOR APPROACH TO EB ESTIMATION

In this appendix, we derive the maximum likelihood estimates of a and Il
from the joint density of the Si'sgiven in (2.3).

To maximize (2.3), we can equivalently maximize the following

logarithmic function of (2.3)

P
f(a,3) = {lnF(a+ri)-'inr(a)+riln-(a+ri)ln(Si,3+ 1)+g(r,Si)}, (A.1)

i=l

where g does not depend on a, t.

We first obtain the first derivatives of f and set them to 0:

d" f(a,pf) = X{9'(a + i)- Yf(a)- ln(Sip + 1)1 =0 and (A.2)
i=1

df(a) ri (a+r)S 0- P-i sif+1

where W(a) = nF(a) and V'(a + ri) = in F(a + ri).
da da

A computer program using the bisection method has been written to

search for the roots of (A.2) and (A.3).

Next we will verify (by the second derivative test) whether the root (&,fl)

is a local maximum of f. Let us first evaluate the second derivatives. Using

the recurrence formula for T(a+ri) as in Abramowitz and Stegun (1964, p.

258),

+1 1
ri-+a ri -'2 +a 1+a a

we have

13



2 ,

(- f(,) = 2+ - < and
da• =;2+1'

(, - 1fa+ (a i 2

-d2S +) s (usPagA.3)dfl (Si + 1)(s )2 J
P ( + ri)Si 0= Z < o.(A.5)
;=1 Si+12

Let -L2 f(a,i3) denote the 2nd partial derivative with respect to ac evalu-

ated at (&,/P). Similar notations are defined for other derivatives. The second

derivative test states that if -2f(&,) < 0 and
d 2 d/ .\ 2 d/ \ F 2  2, ,,' 2

,(&-2) d , 1 (&f, th en ,/ ) is a lo cal

maximum of f(a,3). Since d 2 f(&,3) < 0, we need only program the second

condition and verify it. That is, we need to show
=_ P+ ) (& + r)Si  Si (

D, 2 S 0>, where (5,A) is
i=lfP/Sifp + 1) J i=1

the solution to (A.2) and (A.3).

14



We have discussed how to obtain, the maximum likelihood estimates of

(A.1) when both a and,1P are unknown. For the case that P is known, we

maximize f(a,1) by solving (A.2) as a function of a. There is a unique root of

(A.2) which maximizes f(a,) because f(a4,) is a concave function of a as

shown in (A.4). For the other case that a is known, we solve (A.3) as a

function of P. This root maximizes (A.1) because of the condition in (A.5).
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